Studien- und Prüfungsordnung für den Bachelorstudiengang Electrical Engineering for Sustainable and Renewable Energy an der Hochschule für angewandte Wissenschaften Coburg (SPO B ESR) vom 24.03.2025

Auf Grund von Art. 9 Satz 1 und 2, Art. 80 Abs. 1, Art. 84 Abs. 2, Art. 96 des Bayerischen Hochschulinnovationsgesetzes (BayHIG) vom 5. August 2022 (GVBI. 2022, S. 414, BayRS 2210-1-3-WK) erlässt die Hochschule für angewandte Wissenschaften Coburg folgende Satzung:

§ 1 Zweck der Studien– und Prüfungsordnung

¹Diese Studien- und Prüfungsordnung regelt den Bachelorstudiengang Electrical Engineering for Sustainable and Renewable Energy an der Hochschule für angewandte Wissenschaften Coburg (Hochschule Coburg). ²Sie dient der Ausfüllung und Ergänzung des Bayerischen Hochschulinnovationsgesetzes (BayHIG) vom 5. August 2022 (BayRS 2210-1-3-WK) in der jeweils geltenden Fassung und der Allgemeinen Prüfungsordnung der Hochschule Coburg (APO) vom 22. Juni 2023 (Amtsblatt 2023) in der jeweils geltenden Fassung.

§ 2 Studienziel

¹Das Bachelorstudium Electrical Engineering for Sustainable and Renewable Energy führt zu einem ersten wissenschaftlichen und berufsqualifizierenden Abschluss in den stark nachgefragten Fachgebieten der Energietechnik und erneuerbaren Energien. ²Absolventinnen und Absolventen verfügen über ein breites Grundlagenwissen und praktische Fertigkeiten im Bereich der Elektrotechnik sowie über vertiefte Kenntnisse zur Aufgabenfeldern und Methoden der Energietechnik und erneuerbaren Energien. ³Sachverhalte und Themengebiete können sie fachgerecht einordnen und Problemstellungen unter Anwendung der Methoden des Faches analysieren. ⁴Als profilbildendes Merkmal des Studiengangs haben Absolventen auch naturwissenschaftliche, betriebswirtschaftliche führungsbezogene Kenntnisse erworben. ⁵Sie können diese Kenntnisse und Fertigkeiten in den häufig interdisziplinären Aufgabenstellungen ihres Berufs lösungsorientiert anwenden und sich rasch in eines der zahlreichen Anwendungsgebiete einarbeiten. 6Die Absolventinnen und Absolventen haben sich in entsprechenden Lehr- und Lernformaten kommunikative, kooperative und interkulturelle Kompetenzen angeeignet. 7Sie verfügen über ein zukunftsorientiertes professionelles Selbstverständnis und Verantwortungsbewusstsein. ⁸Durch den integrierten Erwerb fundierter Deutschkenntnissen sowie Content and Language Integrated Learning im Hauptstudium wird nicht-deutschsprachigen Studierenden das wissenschaftliche Arbeiten in deutscher Sprache sowie der Einstieg in eine Berufstätigkeit in deutschen Unternehmen erleichtert. ⁹Der erfolgreiche Abschluss des Studiums befähigt insbesondere zur Übernahme anwendungsorientierter Fach- und erster Führungsaufgaben z.B. im Bereich der Erzeugung, Verteilung, Umformung und Speicherung erneuerbarer Energien. ¹⁰Der Abschluss qualifiziert außerdem zur Aufnahme eines Masterstudiums.

§ 3 Zugangsvoraussetzungen zum Studium

- (1) ¹Bewerberinnen und Bewerber, deren Muttersprache nicht Englisch ist, müssen mit der Bewerbung für den Bachelorstudiengang Electrical Engineering for Sustainable and Renewable Energy Kenntnisse der englischen Sprache auf der Niveaustufe B2 des Gemeinsamen Europäischen Referenzrahmens (GER) für Sprachen nachweisen. ²Als Nachweis dient einer der an der Hochschule für angewandte Wissenschaften Coburg anerkannten Sprachnachweise.
- ¹Bewerberinnen und Bewerber, die keine Deutschen oder Deutschen gleichgestellten Personen im Sinne § 1 Abs. 2 Satz 2 der Hochschulzulassungsverordnung (HZV) vom 10. Februar 2020 (GVBl. S. 87, BayRS 2210-8-2-1-1-WK), die zuletzt durch Verordnung vom 16. August 2023 (GVBl. S. 564) geändert worden ist, in ihrer jeweils aktuellen Fassung, sind "Bewerberinnen und Bewerber aus Drittstaaten". ²Für diese Gruppe ist die Gesamtanzahl der Studienplätze aus Kapazitätsgründen auf 25 begrenzt. ³Bewerberinnen und Bewerber aus Drittstaaten müssen eine Teilnahme am Studierfähigkeitstest "TestAS" in den Modulen "Kerntest" sowie "Ingenieurwissenschaften" mit mindestens einem Gesamtscore (Summe der Punktzahl aus beiden TestAS-Modulen) von 90 nachweisen. ⁴Anhand des Gesamtscores

werden länderbezogene Ranglisten erstellt, um eine möglichst hohe Diversität im Studiengang zu erreichen. ⁵Jede Nationalität erhält anteilsmäßig, ihrer Gesamtanzahl von Bewerbungen zur Anzahl der Gesamtbewerbungen, ein Kontingent an den 25 Plätzen, jedoch mindestens einen Platz.

§ 4 Regelstudienzeit und Aufbau des Studiums

- (1) ¹Das Studium umfasst eine Regelstudienzeit von acht Studiensemestern, davon sieben theoretische und ein praktisches Studiensemester. ²Die Unterrichtssprache ist Englisch im Grundstudium (erstes viertest Semester) und Deutsch (angereichert mit englischem Begleitmaterial) im Hauptstudium (fünftes achtes Semester).
- ¹Das Studium gliedert sich in vier Studienabschnitte. ²Der erste Studienabschnitt umfasst ein theoretisches Studiensemester (Einführungssemester). ³Der zweite Studienabschnitt umfasst drei theoretische Studiensemester in englischer Sprache und Sprachmodule. ⁴Der dritte Studienabschnitt umfasst zwei theoretische Studiensemester in deutscher Sprache, angereichert mit englischem Lernmaterial, und Sprachmodulen. ⁵Der vierte Studienabschnitt umfasst ein praktisches Studiensemester sowie das Abschlusssemester, das die Anfertigung einer Bachelorarbeit beinhaltet.

§ 5 Module und Prüfungen, Notenbildung, Prüfungsgesamtnote

- (1) ¹Die Pflicht- und Wahlpflichtmodule, ihre Stundenzahl, die Art der Lehrveranstaltung, die Prüfungen, deren Gewichtung für die Bildung der End- und Prüfungsgesamtnote und der Divisor sowie die Leistungspunkte (ECTS) sind in der Anlage zu dieser Studien- und Prüfungsordnung festgelegt. ²Die Regelungen werden für die Module durch den Studienplan- und Prüfungsplan ergänzt.
- (2) Neben der Prüfungsgesamtnote wird eine relative Note entsprechend dem ECTS Users' Guide in der jeweils geltenden Fassung gebildet.

§ 6 Vorrückungsberechtigungen

- (1) Zum Eintritt in das zweite Fachsemester (zweiter Studienabschnitt) ist nur berechtigt, wer die Module Academic English Skills und German Basics 1 (Level A1) gemäß Anlage zu dieser Studien- und Prüfungsordnung erfolgreich abgeschlossen hat.
- (2) Zum Eintritt in das fünfte Studiensemester (dritter Studienabschnitt) ist nur berechtigt, wer alle Module des ersten Studienabschnitts, German Basics 3 (Level B1,1) und mindestens zwölf Module des zweiten Studienabschnitts gemäß Anlage zu dieser Studien- und Prüfungsordnung erfolgreich abgeschlossen hat.
- (3) Zum Eintritt in das siebte Studiensemester (vierter Studienabschnitt) ist nur berechtigt, wer alle Pflichtmodule aus dem ersten und zweiten Studienabschnitt und German (Level B1,2) bestanden hat.
- (4) Zur Anmeldung der Bachelorarbeit ist nur berechtigt, wer einen ordnungsgemäßen Praxisbericht zum "Industrial Internship" vorgelegt hat und German (Level B2,1) erfolgreich abgeschlossen hat.

§ 7 Fachstudienberatung

¹Die Fachstudienberatung soll Studierenden Struktur, Wahlmöglichkeiten und Abläufe des Studiums sowie das Lehrangebot erläutern. ²Darüber hinaus soll sie die Studierenden in Fragen der beruflichen Eignung sowie in Hinblick auf aktuelle berufsfeldbezogene Entwicklungen informieren und beraten.

§ 8 Praktisches Studiensemester

- (1) ¹Das praktische Studiensemester umfasst 20 Wochen reine Praxis in Vollzeittätigkeit sowie zwei praxisbegleitende Lehrveranstaltungen. ²Es ist erfolgreich abgeleistet, wenn
 - 1. die Ableistung der Praxisphase durch ein Zeugnis der Ausbildungsstelle, das dem von der Hochschule vorgegebenem Muster entspricht, nachgewiesen ist,
 - 2. ein ordnungsgemäßer Praxisbericht anerkannt wurde und
 - 3. die praxisbegleitenden Lehrveranstaltungen mit Erfolg abgelegt wurden.

³Die Prüfungen des praktischen Studiensemesters können außerhalb des Prüfungszeitraums abgelegt werden. ⁴Es ist ein Praxisbericht in Abstimmung mit der/dem Praxisbeauftragten in deutscher Sprache zu verfassen.

(2) ¹Das praktische Studiensemester soll in der Regel in der Bundesrepublik Deutschland absolviert werden. ²Wird das praktische Studiensemester nicht in einem Unternehmen, oder ganz oder teilweise außerhalb der Bundesrepublik Deutschland abgeleistet, kann die Prüfungskommission besondere Regelungen treffen.

§ 9 Bachelorarbeit

- (1) Das Studium wird durch eine Bachelorarbeit abgeschlossen.
- (2) ¹Die Bachelorarbeit soll zeigen, dass die/der Studierende in der Lage ist, eine Fragestellung aus dem Bereich der Energietechnik bzw. der Erneuerbaren Energien auf wissenschaftlicher Grundlage selbständig zu bearbeiten. ²Die Bearbeitungszeit beträgt unter Berücksichtigung des Studiums des laufenden Semesters in der Regel vier Monate.

§ 10 Bachelorprüfungszeugnis, Akademischer Grad

¹Über den erfolgreichen Abschluss des Studiums werden ein Bachelorprüfungszeugnis und eine Urkunde mit dem erworbenen akademischen Grad gemäß dem jeweiligen Muster in der Anlage zur APO ausgestellt. ²Das Bachelorprüfungszeugnis enthält alle Module des Studiums. ³Auf Grund des erfolgreichen Abschlusses der Bachelorprüfung wird der akademische Grad "Bachelor of Engineering", Kurzform "(B.Eng.)" verliehen.

§ 11 In–Kraft–Treten

Diese Satzung tritt am 1. Oktober 2025 in Kraft.

Ausgefertigt auf Grund des Beschlusses des Senats der Hochschule für angewandte Wissenschaften Coburg vom 14.03.2025 sowie der Genehmigung durch den Präsidenten vom 24.03.2025.

Coburg, den 24.03.2025

gez. Prof. Dr. Gast Präsident

Diese Satzung wurde am 24.03.2025 in der Hochschule für angewandte Wissenschaften Coburg niedergelegt. Die Niederlegung wurde am 24.03.2025 durch Anschlag bekannt gegeben. Tag der Bekanntmachung ist der 24.03.2025.

Anlage: Übersicht über die Module und Prüfungen für den Bachelorstudiengang Electrical Engineering for Sustainable and Renewable Energy

1	2	3	4	5	6	7	8	9
fd.	Lehrveranstaltung	en	•		•	Prüfungen	'	
Nr.	Module	SWS	Art der Lehrveranst. 1)	Art 1)	Zulassungsvorau ssetzungen ¹⁾	Umfang ¹⁾	Gewicht ⁴⁾	ECTS
ste	er Studienabschnitt – theoretisches Stud	iensemeste	er 1					
	Introduction to Advanced Mathematics	4	S, SU, Ü	schrP oder Pf		60 – 90 Minuten, 10 – 20 Seiten	0,5	5
•	Scientific Basics	4	S, SU, Ü	schrP oder Pf		60 – 90 Minuten, 10 – 20 Seiten	0,5	5
}	Academic English Skills	4	S, SU, Ü	schrP oder Pf		60 – 90 Minuten 10 – 20 Seiten	0,25	5
ļ	Soft Skills and Culture	2	SU, Ü	HA oder Pf		10 – 20 Seiten 10 – 20 Seiten	0,25	3
5	German Basics 1 (Level A1)	6	SU, Ü	schrP	1)	90 Minuten	0,25	5
;	German Basics 2 (Level A2)	12	SU, Ü	schrP	1)	90 Minuten	0,25	7
7	Technical Mathematics 1	6	SU, Ü	schrP		90 – 120 Minuten	2	5
3	Technical Mathematics 1 Technical Mathematics 2	6	SU, Ü	schrP		90 – 120 Minuten	2	5
9	Technical Mathematics 3	4	SU, Ü	schrP		90 – 120 Minuten	2	5
10	Mathematical Applications	4	SU, Ü	prStA		20 - 30 Seiten	2	5
1	Lecture Series – Renewable Energy Engineering	4	SU, Ü	schrP		90 – 120 Minuten	2	5
12	AC Technology for Energy Engineering	4	SU, Ü	schrP		90 – 120 Minuten	2	5
13	Measurement Technology	4	SU, Ü, Pr	schrP		90 – 120 Minuten	2	5
14	Fundamentals of Electrical Engineering	4	SU, Ü	schrP		90 – 120 Minuten	2	5
5	Electronic Components and Devices	4	SU, Ü	schrP		90 – 120 Minuten	2	5
6	Fundamentals in Computer-based Measurement Technology	4	SU, Ü, Pr	schrP		90 – 120 Minuten	2	5
17	Programming	4	SU, Ü	schrP		90 – 120 Minuten	2	5
18	Fluid Mechanics	4	SU, Ü	schrP		90 – 120 Minuten	2	5
19	Thermodynamics	4	SU, Ü	schrP		90 – 120 Minuten	2	5
20	Control Systems	4	SU, Ü	schrP		90 – 120 Minuten	2	5
04	- · · · · · · · · · · · · · · · · · · ·		0					

schrP, prStA 90 – 120 Minuten,

SU, Ü

Electrical Drives, Power Grids and Safety

22	German Basics 3 (Level B1.1)	4	SU, Ü	schrP	1)	90 – 120 Minuten	0,5	5
23	Technical German 1 (Level B1.2)	4	SU, Ü	schrP	1)	90 – 120 Minuten	0,5	5
24	Technical German 2 (Level B2.1)	4	SU, Ü	schrP	1)	90 – 120 Minuten	0,5	5

Dritter Studienabschnitt – theoretische Studiensemester 5 und 6

25	Electrical Energy Distribution	4	SU, Ü, Pr	schrP, prStA	1)	schrP: 90 – 120 Minuten,	2	5
26	Chemistry for Energy Applications	4	SU, Ü, Pr	schrP, prStA	1)	schrP: 90 – 120 Minuten,	2	5
27	High Voltage Technology	4	SU, Ü, Pr	schrP, prStA	1)	schrP: 90 – 120 Minuten,	2	5
28	Power Electronics	4	SU, Ü	schrP, prStA		schrP: 90 – 120 Minuten,	2	5
29	Electrical Drive and Power Converter Technology	4	SU, Ü, Pr	schrP, prStA	1)	schrP: 90 – 120 Minuten,	2	5
30	Photovoltaics	4	SU, Ü, Pr	schrP, prStA	1)	schrP: 60 – 90 Minuten,	2	5
31	Electrical Energy Storage Systems	4	SU, Ü, Pr	schrP, prStA	1)	schrP: 90 – 120 Minuten,	2	5
32	Intelligent Energy Systems	4	SU, Ü, Pr	schrP, prStA	1)	schrP: 90 – 120 Minuten,	2	5
33	Technical German 3 (Level B2.2)	4	SU, Ü	schrP	1)	90 – 120 Minuten	0,5	5
34	Introduction in Scientific Writing (Level C1.1)	4	S, SU, Ü	prStA		1)	2	5
35	Elective Subject 1	4	S, SU, Ü, Pr	5)	5)	5)	2	5
36	Elective Subject 2	4	S, SU, Ü, Pr	5)	5)	5)	2	5

Dritter Studienabschnitt – praktisches Studiensemester 7

37	Industrial Internship	(20 Wo)	Pr	HA	1)	20 – 30 Seiten	3)	25
				(Praxis-				
				bericht)				
38	Industrial Internship accompanying Seminar 1	3	S, SU, Ü	mdIP oder		15min (mdlP) oder 60min	3)	3
				schrP				
39	Industrial Internship accompanying Seminar 2	2	S, SU, Ü	mdIP oder		15min (mdIP) oder 60min	3)	2
				schrP		- ,		

Vierter Studienabschnitt – Abschlussarbeit (Semester 8)

40	Elective Subject 3	4	S, SU, Ü, Pr	5)	5)	5)	2	5
41	Engineering Project	2)		wBer		10-30 Seiten	2	10
42	Bachelor Colloquium			Präs		15-30 Minuten	1	3
43	Bachelor Thesis			BA		50-70 Seiten	5	12

Summe 161

Abkürzungen:

BA = Bachelorarbeit
Pr = Praktikum
Präs = Präsentation
Pf = Portfolio

wBer = wissenschaftlicher Bericht

HA = Hausarbeit

prStA = praktische Studienarbeit (z.B. Versuchsbericht, Befragung, Projekt oder Praxisbericht)

S = Seminar

SAr = Seminararbeit schrP = schriftliche Prüfung

SU = seminaristischer Unterricht SWS = Semesterwochenstunden

Ü = Übung

ECTS = European Credit Transfer System

mdlP = Mündliche Prüfung

Fußnoten:

- 1) Soweit verschiedene Möglichkeiten aufgeführt sind, erfolgt die nähere Festlegung durch den Fakultätsrat der Fakultät Elektrotechnik und Informatik im Studien- und Prüfungsplan. Dabei achtet der Fakultätsrat auf eine angemessene Vielfalt der Prüfungsarten.
- 2) Im Rahmen des Engineering Projects wird eine Begleitung durch Lehrpersonal der Hochschule durchgeführt. Der Umfang der Begleitung beträgt 0,2 SWS pro Studierenden.
- 3) Die genannten Module werden mit "bestanden" oder "nicht ausreichend" bewertet und gehen dementsprechend nicht in die Endnotenbildung ein.
- 4) Gewichtsfaktor der jeweiligen Modulprüfungsnoten für die Prüfungsgesamtnote des Bachelorabschlusses
- 5) Das Lehrangebot wird vom Fakultätsrat im Studienplan zum Ende des laufenden Semesters für das folgende Semester festgelegt. Es sind drei beliebige Module auswählbar, Art und Umfang und etwaige Zulassungsvoraussetzungen regelt der Studien- und Prüfungsplan.
- 6) Soweit mehrere Prüfungsformen eingetragen sind, wird Art und Umfang der jeweiligen Prüfung im Studien- und Prüfungsplan festgelegt. Der Umfang von prStA beträgt jeweils 5 30 Seiten. Allgemein gilt: Jeder einzelne Prüfungsteil ist bestehenserheblich. Bei der Note "nicht ausreichend" in einer Teilprüfung wird die Endnote "nicht ausreichend" erteilt. Im Zeugnis wird nur die Endnote ausgewiesen.